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The Deadlock Problem

• Deadlock: a set of blocked processes each holding a resource and waiting to 
acquire a resource held by another process in the set 

• Examples: 

• a system has 2 disk drives, P1 and P2 each hold one disk drive and each 
needs another one 

• semaphores A and B, initialized to 1 

	   	     P1   	 	    P2 

	 	 wait (A);		 wait(B)  

	 	 wait (B);		 wait(A)



Bridge Crossing Example

• Traffic only in one direction, each section can be viewed as a resource 

• If a deadlock occurs, it can be resolved if one car backs up  

• preempt resources and rollback 

• several cars may have to be backed up 

• starvation is possible 

• Note: most OSes do not prevent or deal with deadlocks



System Model

• Resources: R1, R2, . . ., Rm 

• each represents a different resource type   

• e.g., CPU cycles, memory space, I/O devices 

• each resource type Ri has Wi instances. 

• Each process utilizes a resource in the following pattern 

• request  

• use  

• release



Deadlock in program

• Two mutex locks are created an initialized: 

•



Deadlock in program

• Deadlock is possible if thread 1 acquires first_mutex and thread 2 
acquires second_mutex. Thread 1 then waits for second_mutex 
and thread 2 waits for first_mutex. 

• Can be illustrated with a resource allocation graph:



Review

• Problems of synchronization 

• System model of deadlock



Four Conditions of Deadlock

• Mutual exclusion: only one process at a time can use a resource 

• Hold and wait: a process holding at least one resource is waiting to acquire 
additional resources held by other processes 

• No preemption: a resource can be released only voluntarily by the process holding 
it, after it has completed its task 

• Circular wait:  there exists a set of waiting processes {P0, P1, …, Pn} 

• P0 is waiting for a resource that is held by P1  

• P1 is waiting for a resource that is held by P2 …  

• Pn–1 is waiting for a resource that is held by Pn  

• Pn is waiting for a resource that is held by P0



Resource-Allocation Graph

• Two types of nodes: 

• P = {P1, P2, …, Pn}, the set of all the processes in the system 

• R = {R1, R2, …, Rm}, the set of all resource types in the system 

• Two types of edges: 

• request edge: directed edge Pi ➞ Rj 

• assignment edge: directed edge Rj ➞ Pi



Resource-Allocation Graph

• Process 

• Resource Type with 4 instances 

• Pi requests instance of Rj 

• Pi is holding an instance of Rj

Pi!
Rj!

Pi!
Rj!



Resource Allocation Graph

• One instance of R1 

• Two instances of R2 

• One instance of R3 

• Three instance of R4 

• P1 holds one instance of R2 and is waiting 
for an instance of R1 

• P2 holds one instance of R1, one instance 
of R2, and is waiting for an instance of R3 

• P3 is holds one instance of R3



Resource Allocation Graph

• Is there a deadlock?

p1->r1->p2->r3->p3->r2->p1
p2->r3->p3->r2->p2



Resource Allocation Graph

• Is there a deadlock? 

• circular wait does not necessarily lead to deadlock

p1->r1->p3->r2->p1
P4 releases first



Basic Facts

• If graph contains no cycles  ➠ no deadlock 

• If graph contains a cycle  

• if only one instance per resource type, ➠ deadlock 

• if several instances per resource type ➠ possibility of deadlock



How to Handle Deadlocks
• Ensure that the system will never enter a deadlock state 

• Prevention 

• Avoidance 

• Allow the system to enter a deadlock state and then recover - database 

• Deadlock detection and recovery: 

• Ignore the problem and pretend deadlocks never occur in the system



Deadlock Prevention

• How to prevent mutual exclusion 

• not required for sharable resources 

• must hold for non-sharable resources 

• How to prevent hold and wait 

• whenever a process requests a resource, it doesn’t hold any other resources 

• require process to request all its resources before it begins execution 

• allow process to request resources only when the process has none 

• low resource utilization; starvation possible



Deadlock Prevention

• How to handle no preemption 

• if a process requests a resource not available 

• release all resources currently being held 

• preempted resources are added to the list of resources it waits for  

• process will be restarted only when it can get all waiting resources 

• How to handle circular wait  

• impose a total ordering of all resource types 

• require that each process requests resources in an increasing order 

• Many operating systems adopt this strategy for some locks.



Circular Wait

• Invalidating the circular wait condition is most common. 

• Simply assign each resource (i.e. mutex locks) a unique number. 

• Resources must be acquired in order. 

•
first_mutex = 1 
second_mutex = 5

code for thread_two could not be  
written as follows:



For dynamic acquired lock



Deadlock Avoidance

• Dead avoidance: require extra information about how resources are 
to be requested 

• Is this requirement practical?  

• Each process declares a max number of resources it may need 

• Deadlock-avoidance algorithm ensure there can never be a circular-
wait condition 

• Resource-allocation state:  

• the number of available and allocated resources 

• the maximum demands of the processes



Safe State

• When a process requests an available resource, system must decide if 
immediate allocation leaves the system in a safe state: 

• there exists a sequence <P1, P2, …, Pn> of all processes in the system 

• for each Pi, resources that Pi can still request can be satisfied by currently 
available resources + resources held by all the Pj, with j < i 

• Safe state can guarantee no deadlock 

• if Pi’s resource needs are not immediately available:  

• wait until all Pj have finished (j < i) 

• when Pj (j < i) has finished, Pi can obtain needed resources,  

• when Pi terminates, Pi +1 can obtain its needed resources, and so on 



Basic Facts

• If a system is in safe state ➠ no deadlocks 

• If a system is in unsafe state ➠ possibility of deadlock 

• Deadlock avoidance ➠ ensure a system never enters an unsafe state



Example

• Resources: 12 

• Safe sequences: T1 T0 T2 

• T1 gets and return (5 in total), T0 gets all and returns (10 in total) 
and then T2 

• What if we allocate 1 more for T2?

Available
3

Extra need
5
2
7



Example

• Resources: 12 

• p1 gets and return (4 in total), P0 P2 have to wait …

Max 
need

Current 
have available Extra 

need

P0 10 5 2 5

P1 4 2 2

P2 9 3 6



Deadlock Avoidance Algorithms

• Single instance of each resource type ➠ use resource-allocation graph 

• Multiple instances of a resource type ➠ use the banker’s algorithm



Single-instance Deadlock Avoidance

• Resource-allocation graph can be used for single instance resource 
deadlock avoidance 
• one new type of edge: claim edge 

• claim edge Pi ➞ Rj indicates that process Pi may request resource Rj 

• claim edge is represented by a dashed line 

• resources must be claimed a priori in the system 

• Transitions in between edges 

• claim edge converts to request edge when a process requests a resource 
• request edge converts to an assignment edge when the  resource is 

allocated to the process 

• assignment edge reconverts to a claim edge when a resource is released 
by a process



Single-instance Deadlock Avoidance

• Suppose that process Pi requests a resource Rj 

• The request can be granted only if: 

• converting the request edge to an assignment edge does not result 
in the formation of a cycle  

• no cycle ➠ safe state 



Banker’s Algorithm

• Banker’s algorithm is for multiple-instance resource deadlock avoidance  

• each process must a priori claim maximum use of each resource type 

• when a process requests a resource it may have to wait 

• when a process gets all its resources it must release them in a finite 
amount of time



Data Structures for the Banker’s Algorithm

• n processes, m types of resources 

• available:  an array of length m, instances of available resource 

• available[j] = k: k instances of resource type Rj  available 

• max: a n x m matrix 

• max [i,j] = k: process Pi may request at most k instances of resource Rj 

• allocation:  n x m matrix  

• allocation[i,j] = k: Pi is currently allocated k instances of Rj 

• need:  n x m matrix 

• need[i,j] = k: Pi may need k more instances of Rj to complete its task 

• need [i,j] = max[i,j] – allocation [i,j]



Banker’s Algorithm: Safe State

• Data structure to compute whether the system is in a safe state 

• use work (a vector of length m) to track allocatable resources 

• unallocated + released by finished processes 

• use finish (a vector of length n) to track whether process has finished 

• initialize: work = available, finish[i] = false for i = 0, 1, …, n- 1 

• Algorithm: 

• find an i such that  finish[i] = false && need[i] ≤ work if no such i exists, 
go to step 3 

• work = work + allocation[i], finish[i] = true, go to step 1 

• if finish[i] == true for all i, then the system is in a safe state



Bank’s Algorithm: Resource Allocation

• Data structure: request vector for process Pi   
• request[j] = k then process Pi wants k instances of resource type Rj 

• Algorithm: 

1.if requesti≤ need[i] go to step 2; otherwise, raise error condition (the process has 
exceeded its maximum claim) 

2.if requesti ≤ available, go to step 3; otherwise Pi  must wait  (not all resources are not 
available) 

3.pretend to allocate requested resources to Pi by modifying the state: 

	 	 available = available  – requesti 

	 	 allocation[i] = allocation[i] + requesti 

	 	 need[i] = need[i] – requesti 

4.use previous algorithm to test if it is a safe state, if so ➠ allocate the resources to Pi 

5.if unsafe  ➠  Pi must wait, and the old resource-allocation state is restored



Banker’s Algorithm: Example

• System state: 
• 5 processes P0  through P4 
• 3 resource types: A (10 instances),  B (5instances), and C (7 instances) 

• Snapshot at time T0: 

	 	 	      allocation	   max	      available 

	 	 	 	 A B C	        A B C 	 	 A B C 

	 	  P0	 	 0 1 0	         7 5 3 	 	 3 3 2 

	 	  P1	 	 2 0 0 	         3 2 2   

	 	  P2	 	 3 0 2 	         9 0 2 

	 	  P3	 	 2 1 1 	         2 2 2 

	 	  P4	 	 0 0 2	         4 3 3  	 	



Banker’s Algorithm: Example

• need = max – allocation 

	 	 	 	 need   	 	 available 

	 	 	 	 A B C	  	 A B C 

	 	  P0	 	 7 4 3 	   	 3 3 2 

	 	  P1	 	 1 2 2  

	 	  P2	 	 6 0 0  

	 	  P3	 	 0 1 1 

	 	  P4	 	 4 3 1  

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies 
safety criteria



Banker’s Algorithm: Example

• Why < P1, P3, P4, P2, P0> is in safe state?
                       allocation	   max	         available.      Needed 

	 	 	 	 A B C	        A B C         A B C 

	 	  P0	 	 0 1 0	               7 5 3 		 3 3 2             7 4 3 

	 	  P1	 	 2 0 0 	         3 2 2                              1 2 2 

	 	  P2	 	 3 0 2 	         9 0 2                               6 0 0 

	 	  P3	 	 2 1 1 	         2 2 2                               0 1 1 

	 	  P4	 	 0 0 2	                 4 3 3                              4 3 1

1) Finish[1] = true, needed[1] < work -> work = work + allocation = [5 3 2] 
2) Finish[3] = true,  needed[3]< work -> work = work + allocation = [7 4 3] 
3) finish[4] = true, needed[4] < work -> work = work + allocation = [7 4 5] 
4) finish[2] = true, needed[2] < work -> work = work + allocation = [10 4 7] 
5) Finish[0] = true, needed[0] < work -> work = work + allocation = [10 5 7]



Banker’s Algorithm: Example
P1 allocates 1 0 2

                         allocation	        max	                available.         need 

	 	 	 	 A B C	        A B C 	 	 A B C 

	 	  P0	 	 0 1 0	                7 5 3 	 	 2 3 0              7 4 3 

	 	  P1	 	 3  0 2 	         3 2 2                                        0 2 0 

	 	  P2	 	 3 0 2 	         9 0 2                                        6 0 0      

	 	  P3	 	 2 1 1 	         2 2 2                                        0 11 

	           P4	 	 0 0 2	                4 3 3                                        4 3 1     

Check whether it is in safe state?

1) Finish[1] = true, needed[1] < work -> work = work + allocation = [5 3 2] 
2) Finish[3] = true,  needed[3]< work -> work = work + allocation = [7 4 3] 
3) finish[4] = true, needed[4] < work -> work = work + allocation = [7 4 5] 
4) finish[2] = true, needed[2] < work -> work = work + allocation = [10 4 7] 
5) Finish[0] = true, needed[0] < work -> work = work + allocation = [10 5 7]



Banker’s Algorithm: Example
P0 requests 0 2 0

                         allocation	        max	                available.         need 

	 	 	 	 A B C	        A B C 	 	 A B C 

	 	  P0	 	 0 3 0	                7 5 3 	 	 2 1 0              7 2 3 

	 	  P1	 	 3  0 2 	         3 2 2                                        0 2 0 

	 	  P2	 	 3 0 2 	         9 0 2                                        6 0 0      

	 	  P3	 	 2 1 1 	         2 2 2                                        0 11 

	           P4	 	 0 0 2	                4 3 3                                        4 3 1     

Check whether it is in safe state?

1) We cannot find a process that the need[i] < work[i] 



Deadlock Detection

• Allow system to enter deadlock state, but detect and recover from it 

• Detection algorithm and recovery scheme



Deadlock Detection: Single Instance Resources

• Maintain a wait-for graph, nodes are processes 

• Pi ➞ Pj   if Pi is waiting for Pj 

• Periodically invoke an algorithm that searches for a cycle 
in the graph 

• if there is a cycle, there exists a deadlock 

• an algorithm to detect a cycle in a graph requires an 
order of n2 operations, 

• where n is the number of vertices in the graph



Wait-for Graph Example

Resource-allocation Graph wait-for graph



Deadlock Detection: Multi-instance Resources

• Detection algorithm similar to Banker’s algorithm’s safety condition 
• to prove it is not possible to enter a safe state 

• Data structure 
• available:  a vector of length m, number of available resources of each type 

• allocation:  an n x m matrix defines the number of resources of each type 
currently allocated to each process 

• request:  an n x m matrix indicates the current request  of each process 
• request [i, j] = k: process Pi is requesting k more instances of resource Rj 

• work: a vector of m, the allocatable instances of resources 

• finish: a vector of m, whether the process has finished 
• if allocation[i] ≠ 0 ➠ finish[i] = false; otherwise, finish[i] = true



Deadlock Detection: Multi-instance

• Find an process i such that  finish[i] == false && 
request[i] ≤ work 

• if no such i exists, go to step 3 

• work = work + allocation[i]; finish[i] = true, go to 
step 1 

• If finish[i] == false, for some i  the system is in deadlock 
state  

• if finish[i] == false, then Pi is deadlocked



Example of Detection Algorithm

• System states: 
• five processes P0 through P4 
• three resource types: A (7 instances), B (2 instances), and C (6 instances) 

• Snapshot at time T0: 

	 	 	  	 allocation	 	 request	 	 available 

	 	 	 	 A B C 	   	 	 A B C 	 	 A B C 

	          P0	         0 1 0             	 0 0 0 	 	 0 0 0 

             P1	         2 0 0 	     	 	 2 0 2 

             P2	 	 3 0 3            	 	 0 0 0  

             P3         2 1 1 	    	 	 1 0 0  

	          P4	         0 0 2 	    	 	 0 0 2 
• Sequence <P0, P2, P3, P1, P4> will result in finish[i] = true for all i

P1: [ 0 0 0] -> 0 1 0]  
P2: [0 1 0]  -> [3 1 3] 
P3: [3 1 3] -> [5 2 4] 
P1: [5 2 4] -> [ 7 2 4] 
P4: [7 2 4]-> [7 2 6]



Example (Cont.)

• P2 requests an additional instance of type C 

	 	 	 	 request 

	 	 	 	 A B C 

	 	  P0	 	 0 0 0 

	 	  P1	 	 2 0 2 

	 	  P2	 	 0 0 1 

	 	  P3	 	 1 0 0  

	 	  P4	 	 0 0 2 
• State of system? 

• can reclaim resources held by process P0, but insufficient resources to fulfill 
other processes; requests 

• deadlock exists, consisting of processes P1,  P2, P3, and P4

P1: [ 0 0 0] -> [0 1 0] 



Deadlock Recovery: Option I

• Terminate deadlocked processes. options: 

• abort all deadlocked processes 

• abort one process at a time until the deadlock cycle is eliminated 

• In which order should we choose to abort? 

• priority of the process 

• how long process has computed, and how much longer to completion 

• resources the process has used 

• resources process needs to complete 

• how many processes will need to be terminated 

• is process interactive or batch?



Deadlock Recovery: Option II

• Resource preemption 

• Select a victim 

• Rollback 

• Starvation 

• How could you ensure that the resources do not preempt from 
the same process?



Summary

• Deadlock occurs in which condition? 

• Four conditions for deadlock 

• Deadlock can be modeled via resource-allocation graph 

• Deadlock can be prevented by breaking one of the four conditions 

• Deadlock can be avoided by using the banker’s algorithm 

• A deadlock detection algorithm 

• Deadlock recovery



HW7&8 is out 

Lab 2 is out


