
Operating Systems (Fall/Winter 2018)

Deadlocks

Yajin Zhou (http://yajin.org)

Zhejiang University

Acknowledgement: some pages are based on the slides from Zhi Wang(fsu).

http://yajin.org

Contents

• Deadlock problem

• System model

• Handling deadlocks

• deadlock prevention

• deadlock avoidance

• deadlock detection

• Deadlock recovery

The Deadlock Problem

• Deadlock: a set of blocked processes each holding a resource and waiting to
acquire a resource held by another process in the set

• Examples:

• a system has 2 disk drives, P1 and P2 each hold one disk drive and each
needs another one

• semaphores A and B, initialized to 1

	 	 P1 	 	 P2

	 	 wait (A);		 wait(B)

	 	 wait (B);		 wait(A)

Bridge Crossing Example

• Traffic only in one direction, each section can be viewed as a resource

• If a deadlock occurs, it can be resolved if one car backs up

• preempt resources and rollback

• several cars may have to be backed up

• starvation is possible

• Note: most OSes do not prevent or deal with deadlocks

System Model

• Resources: R1, R2, . . ., Rm

• each represents a different resource type

• e.g., CPU cycles, memory space, I/O devices

• each resource type Ri has Wi instances.

• Each process utilizes a resource in the following pattern

• request

• use

• release

Deadlock in program

• Two mutex locks are created an initialized:

•

Deadlock in program

• Deadlock is possible if thread 1 acquires first_mutex and thread 2
acquires second_mutex. Thread 1 then waits for second_mutex
and thread 2 waits for first_mutex.

• Can be illustrated with a resource allocation graph:

Review

• Problems of synchronization

• System model of deadlock

Four Conditions of Deadlock

• Mutual exclusion: only one process at a time can use a resource

• Hold and wait: a process holding at least one resource is waiting to acquire
additional resources held by other processes

• No preemption: a resource can be released only voluntarily by the process holding
it, after it has completed its task

• Circular wait: there exists a set of waiting processes {P0, P1, …, Pn}

• P0 is waiting for a resource that is held by P1

• P1 is waiting for a resource that is held by P2 …

• Pn–1 is waiting for a resource that is held by Pn

• Pn is waiting for a resource that is held by P0

Resource-Allocation Graph

• Two types of nodes:

• P = {P1, P2, …, Pn}, the set of all the processes in the system

• R = {R1, R2, …, Rm}, the set of all resource types in the system

• Two types of edges:

• request edge: directed edge Pi ➞ Rj

• assignment edge: directed edge Rj ➞ Pi

Resource-Allocation Graph

• Process

• Resource Type with 4 instances

• Pi requests instance of Rj

• Pi is holding an instance of Rj

Pi!
Rj!

Pi!
Rj!

Resource Allocation Graph

• One instance of R1

• Two instances of R2

• One instance of R3

• Three instance of R4

• P1 holds one instance of R2 and is waiting
for an instance of R1

• P2 holds one instance of R1, one instance
of R2, and is waiting for an instance of R3

• P3 is holds one instance of R3

Resource Allocation Graph

• Is there a deadlock?

p1->r1->p2->r3->p3->r2->p1
p2->r3->p3->r2->p2

Resource Allocation Graph

• Is there a deadlock?

• circular wait does not necessarily lead to deadlock

p1->r1->p3->r2->p1
P4 releases first

Basic Facts

• If graph contains no cycles ➠ no deadlock

• If graph contains a cycle

• if only one instance per resource type, ➠ deadlock

• if several instances per resource type ➠ possibility of deadlock

How to Handle Deadlocks
• Ensure that the system will never enter a deadlock state

• Prevention

• Avoidance

• Allow the system to enter a deadlock state and then recover - database

• Deadlock detection and recovery:

• Ignore the problem and pretend deadlocks never occur in the system

Deadlock Prevention

• How to prevent mutual exclusion

• not required for sharable resources

• must hold for non-sharable resources

• How to prevent hold and wait

• whenever a process requests a resource, it doesn’t hold any other resources

• require process to request all its resources before it begins execution

• allow process to request resources only when the process has none

• low resource utilization; starvation possible

Deadlock Prevention

• How to handle no preemption

• if a process requests a resource not available

• release all resources currently being held

• preempted resources are added to the list of resources it waits for

• process will be restarted only when it can get all waiting resources

• How to handle circular wait

• impose a total ordering of all resource types

• require that each process requests resources in an increasing order

• Many operating systems adopt this strategy for some locks.

Circular Wait

• Invalidating the circular wait condition is most common.

• Simply assign each resource (i.e. mutex locks) a unique number.

• Resources must be acquired in order.

•
first_mutex = 1
second_mutex = 5

code for thread_two could not be
written as follows:

For dynamic acquired lock

Deadlock Avoidance

• Dead avoidance: require extra information about how resources are
to be requested

• Is this requirement practical?

• Each process declares a max number of resources it may need

• Deadlock-avoidance algorithm ensure there can never be a circular-
wait condition

• Resource-allocation state:

• the number of available and allocated resources

• the maximum demands of the processes

Safe State

• When a process requests an available resource, system must decide if
immediate allocation leaves the system in a safe state:

• there exists a sequence <P1, P2, …, Pn> of all processes in the system

• for each Pi, resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < i

• Safe state can guarantee no deadlock

• if Pi’s resource needs are not immediately available:

• wait until all Pj have finished (j < i)

• when Pj (j < i) has finished, Pi can obtain needed resources,

• when Pi terminates, Pi +1 can obtain its needed resources, and so on

Basic Facts

• If a system is in safe state ➠ no deadlocks

• If a system is in unsafe state ➠ possibility of deadlock

• Deadlock avoidance ➠ ensure a system never enters an unsafe state

Example

• Resources: 12

• Safe sequences: T1 T0 T2

• T1 gets and return (5 in total), T0 gets all and returns (10 in total)
and then T2

• What if we allocate 1 more for T2?

Available
3

Extra need
5
2
7

Example

• Resources: 12

• p1 gets and return (4 in total), P0 P2 have to wait …

Max
need

Current
have available Extra

need

P0 10 5 2 5

P1 4 2 2

P2 9 3 6

Deadlock Avoidance Algorithms

• Single instance of each resource type ➠ use resource-allocation graph

• Multiple instances of a resource type ➠ use the banker’s algorithm

Single-instance Deadlock Avoidance

• Resource-allocation graph can be used for single instance resource
deadlock avoidance
• one new type of edge: claim edge

• claim edge Pi ➞ Rj indicates that process Pi may request resource Rj

• claim edge is represented by a dashed line

• resources must be claimed a priori in the system

• Transitions in between edges

• claim edge converts to request edge when a process requests a resource
• request edge converts to an assignment edge when the resource is

allocated to the process

• assignment edge reconverts to a claim edge when a resource is released
by a process

Single-instance Deadlock Avoidance

• Suppose that process Pi requests a resource Rj

• The request can be granted only if:

• converting the request edge to an assignment edge does not result
in the formation of a cycle

• no cycle ➠ safe state

Banker’s Algorithm

• Banker’s algorithm is for multiple-instance resource deadlock avoidance

• each process must a priori claim maximum use of each resource type

• when a process requests a resource it may have to wait

• when a process gets all its resources it must release them in a finite
amount of time

Data Structures for the Banker’s Algorithm

• n processes, m types of resources

• available: an array of length m, instances of available resource

• available[j] = k: k instances of resource type Rj available

• max: a n x m matrix

• max [i,j] = k: process Pi may request at most k instances of resource Rj

• allocation: n x m matrix

• allocation[i,j] = k: Pi is currently allocated k instances of Rj

• need: n x m matrix

• need[i,j] = k: Pi may need k more instances of Rj to complete its task

• need [i,j] = max[i,j] – allocation [i,j]

Banker’s Algorithm: Safe State

• Data structure to compute whether the system is in a safe state

• use work (a vector of length m) to track allocatable resources

• unallocated + released by finished processes

• use finish (a vector of length n) to track whether process has finished

• initialize: work = available, finish[i] = false for i = 0, 1, …, n- 1

• Algorithm:

• find an i such that finish[i] = false && need[i] ≤ work if no such i exists,
go to step 3

• work = work + allocation[i], finish[i] = true, go to step 1

• if finish[i] == true for all i, then the system is in a safe state

Bank’s Algorithm: Resource Allocation

• Data structure: request vector for process Pi
• request[j] = k then process Pi wants k instances of resource type Rj

• Algorithm:

1.if requesti≤ need[i] go to step 2; otherwise, raise error condition (the process has
exceeded its maximum claim)

2.if requesti ≤ available, go to step 3; otherwise Pi must wait (not all resources are not
available)

3.pretend to allocate requested resources to Pi by modifying the state:

	 	 available = available – requesti

	 	 allocation[i] = allocation[i] + requesti

	 	 need[i] = need[i] – requesti

4.use previous algorithm to test if it is a safe state, if so ➠ allocate the resources to Pi

5.if unsafe ➠ Pi must wait, and the old resource-allocation state is restored

Banker’s Algorithm: Example

• System state:
• 5 processes P0 through P4
• 3 resource types: A (10 instances), B (5instances), and C (7 instances)

• Snapshot at time T0:

	 	 	 allocation	 max	 available

	 	 	 	 A B C	 A B C 	 	 A B C

	 	 P0	 	 0 1 0	 7 5 3 	 	 3 3 2

	 	 P1	 	 2 0 0 	 3 2 2

	 	 P2	 	 3 0 2 	 9 0 2

	 	 P3	 	 2 1 1 	 2 2 2

	 	 P4	 	 0 0 2	 4 3 3 	 	

Banker’s Algorithm: Example

• need = max – allocation

	 	 	 	 need 	 	 available

	 	 	 	 A B C	 	 A B C

	 	 P0	 	 7 4 3 	 	 3 3 2

	 	 P1	 	 1 2 2

	 	 P2	 	 6 0 0

	 	 P3	 	 0 1 1

	 	 P4	 	 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies
safety criteria

Banker’s Algorithm: Example

• Why < P1, P3, P4, P2, P0> is in safe state?
 allocation	 max	 available. Needed

	 	 	 	 A B C	 A B C A B C

	 	 P0	 	 0 1 0	 7 5 3 		 3 3 2 7 4 3

	 	 P1	 	 2 0 0 	 3 2 2 1 2 2

	 	 P2	 	 3 0 2 	 9 0 2 6 0 0

	 	 P3	 	 2 1 1 	 2 2 2 0 1 1

	 	 P4	 	 0 0 2	 4 3 3 4 3 1

1) Finish[1] = true, needed[1] < work -> work = work + allocation = [5 3 2]
2) Finish[3] = true, needed[3]< work -> work = work + allocation = [7 4 3]
3) finish[4] = true, needed[4] < work -> work = work + allocation = [7 4 5]
4) finish[2] = true, needed[2] < work -> work = work + allocation = [10 4 7]
5) Finish[0] = true, needed[0] < work -> work = work + allocation = [10 5 7]

Banker’s Algorithm: Example
P1 allocates 1 0 2

 allocation	 max	 available. need

	 	 	 	 A B C	 A B C 	 	 A B C

	 	 P0	 	 0 1 0	 7 5 3 	 	 2 3 0 7 4 3

	 	 P1	 	 3 0 2 	 3 2 2 0 2 0

	 	 P2	 	 3 0 2 	 9 0 2 6 0 0

	 	 P3	 	 2 1 1 	 2 2 2 0 11

	 P4	 	 0 0 2	 4 3 3 4 3 1

Check whether it is in safe state?

1) Finish[1] = true, needed[1] < work -> work = work + allocation = [5 3 2]
2) Finish[3] = true, needed[3]< work -> work = work + allocation = [7 4 3]
3) finish[4] = true, needed[4] < work -> work = work + allocation = [7 4 5]
4) finish[2] = true, needed[2] < work -> work = work + allocation = [10 4 7]
5) Finish[0] = true, needed[0] < work -> work = work + allocation = [10 5 7]

Banker’s Algorithm: Example
P0 requests 0 2 0

 allocation	 max	 available. need

	 	 	 	 A B C	 A B C 	 	 A B C

	 	 P0	 	 0 3 0	 7 5 3 	 	 2 1 0 7 2 3

	 	 P1	 	 3 0 2 	 3 2 2 0 2 0

	 	 P2	 	 3 0 2 	 9 0 2 6 0 0

	 	 P3	 	 2 1 1 	 2 2 2 0 11

	 P4	 	 0 0 2	 4 3 3 4 3 1

Check whether it is in safe state?

1) We cannot find a process that the need[i] < work[i]

Deadlock Detection

• Allow system to enter deadlock state, but detect and recover from it

• Detection algorithm and recovery scheme

Deadlock Detection: Single Instance Resources

• Maintain a wait-for graph, nodes are processes

• Pi ➞ Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that searches for a cycle
in the graph

• if there is a cycle, there exists a deadlock

• an algorithm to detect a cycle in a graph requires an
order of n2 operations,

• where n is the number of vertices in the graph

Wait-for Graph Example

Resource-allocation Graph wait-for graph

Deadlock Detection: Multi-instance Resources

• Detection algorithm similar to Banker’s algorithm’s safety condition
• to prove it is not possible to enter a safe state

• Data structure
• available: a vector of length m, number of available resources of each type

• allocation: an n x m matrix defines the number of resources of each type
currently allocated to each process

• request: an n x m matrix indicates the current request of each process
• request [i, j] = k: process Pi is requesting k more instances of resource Rj

• work: a vector of m, the allocatable instances of resources

• finish: a vector of m, whether the process has finished
• if allocation[i] ≠ 0 ➠ finish[i] = false; otherwise, finish[i] = true

Deadlock Detection: Multi-instance

• Find an process i such that finish[i] == false &&
request[i] ≤ work

• if no such i exists, go to step 3

• work = work + allocation[i]; finish[i] = true, go to
step 1

• If finish[i] == false, for some i the system is in deadlock
state

• if finish[i] == false, then Pi is deadlocked

Example of Detection Algorithm

• System states:
• five processes P0 through P4
• three resource types: A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:

	 	 	 	 allocation	 	 request	 	 available

	 	 	 	 A B C 	 	 	 A B C 	 	 A B C

	 P0	 0 1 0 	 0 0 0 	 	 0 0 0

 P1	 2 0 0 	 	 	 2 0 2

 P2	 	 3 0 3 	 	 0 0 0

 P3 2 1 1 	 	 	 1 0 0

	 P4	 0 0 2 	 	 	 0 0 2
• Sequence <P0, P2, P3, P1, P4> will result in finish[i] = true for all i

P1: [0 0 0] -> 0 1 0]
P2: [0 1 0] -> [3 1 3]
P3: [3 1 3] -> [5 2 4]
P1: [5 2 4] -> [7 2 4]
P4: [7 2 4]-> [7 2 6]

Example (Cont.)

• P2 requests an additional instance of type C

	 	 	 	 request

	 	 	 	 A B C

	 	 P0	 	 0 0 0

	 	 P1	 	 2 0 2

	 	 P2	 	 0 0 1

	 	 P3	 	 1 0 0

	 	 P4	 	 0 0 2
• State of system?

• can reclaim resources held by process P0, but insufficient resources to fulfill
other processes; requests

• deadlock exists, consisting of processes P1, P2, P3, and P4

P1: [0 0 0] -> [0 1 0]

Deadlock Recovery: Option I

• Terminate deadlocked processes. options:

• abort all deadlocked processes

• abort one process at a time until the deadlock cycle is eliminated

• In which order should we choose to abort?

• priority of the process

• how long process has computed, and how much longer to completion

• resources the process has used

• resources process needs to complete

• how many processes will need to be terminated

• is process interactive or batch?

Deadlock Recovery: Option II

• Resource preemption

• Select a victim

• Rollback

• Starvation

• How could you ensure that the resources do not preempt from
the same process?

Summary

• Deadlock occurs in which condition?

• Four conditions for deadlock

• Deadlock can be modeled via resource-allocation graph

• Deadlock can be prevented by breaking one of the four conditions

• Deadlock can be avoided by using the banker’s algorithm

• A deadlock detection algorithm

• Deadlock recovery

HW7&8 is out

Lab 2 is out

